1300 770 908

Sustainable HVAC Solutions

TechIN appoints ecoHVAC as a distributor of ALDAG Air Handling Units

Aldag Modular Air Handling Unit

ecoHVAC are pleased to advise we have been appointed by TechIN as the QLD, NSW & ACT Distributor for the ALDAG range of Air Handling Units.

ALDAG modular air handling units are available with airflow range from 400 l/s up to 34,700 l/s. The AHU conditions the air to achieve the desired indoor air quality, temperature and humidity. They are EUROVENT Certified and are designed to meet the customer’s specific HVAC requirements.

Since 1967 ALDAG Cooling Industry Inc. has been a pioneer and leader in the production of refrigerators by these facilities. Flexibility in design, quality in production, energy saving, customer satisfaction in service are their general policy.

  • Airflow Range: 400 l/s to 34,700 l/s (larger airflows available as special design)
  • Construction: Commercial, Hygienic, Single deck and multiple decking, Multi-zone, Vertical & Horizontal, Indoor and Outdoor installation
  • Fans: EC fans, AC fans with speed controller, Centrifugal Belt-driven
  • Cooling: Water and glycol coils, DX freon coils, Special coils like CO2, NH3…
  • Heating: Water coils, Electric banks, Vapor coils
  • Heat recovery: Wheel type, Plate type, Run-around coils
  • Filters: Any classification (EUROVENT certified)
  • Options: UVC, Controls, Humidifiers
  • Casing: T2 – T3 class. TB1 – TB3 class

For more information on Aldag Air Handling Units, please call us on 1300 770 908 or Contact Us.

TechIN appoints ecoHVAC exclusive RHOSS distributor for QLD, NSW & ACT

Aligned with TechIN expansion strategy, TechIN has appointed ecoHVAC as its exclusive distributor of the RHOSS brand for QLD, NSW and ACT; including chillers, heat pumps and polyvalent units (4 & 6 Pipes).

ecoHVAC vast experience in the HVAC&R industry will enrich the technical support of the RHOSS brand in these states, together with TechIN and RHOSS engineering departments the QLD, NSW and ACT HVAC&R industries will be now closer than ever to the outstanding RHOSS engineering solutions.

For more information, please don’t hesitate to Contact Us.

ecoHVAC Exclusive Rhoss Distributor

ecoHVAC now representing Evapco Cooling Towers in Victoria

ecoHVAC are proud to announce we are now the representative for EVAPCO Cooling Towers in Victoria.

EVAPCO is a leading provider of commercial HVAC cooling solutions – Open Cooling Towers or Closed Circuit Coolers.

No matter the environment, EVAPCO has products suited for any situation.

For more information, please don’t hesitate to Contact Us.

ecohvac evapco representative victoria cooling towers

Measure your UVC Equipment’s Performance without an expensive Radiometer

Introducing the American Ultraviolet Dosimeter.

The UVC Dosimeter is an inexpensive way to accurately measure your UVC equipment’s performance. Just place the UVC Dosimeter in the room, turn on your equipment and the Photo-chromatic ink reacts to the UVC to give you accurate dosage levels.

Contact Us today for more information.

Enhance Traditional System Design with Acutherm ADVANTAGE VAV Diffusers

Acutherm ADVANTAGE VAV diffusers enhance traditional system design by adding personal control. Room temperature sensors provide constant feedback to the controller located in the diffuser, enabling precise monitoring of the space temperature.

Discover the ADVANTAGE:
• Superior air distribution
• No dumping
• More entrainment
• Even temperature distribution
• Better room air change effectiveness
• Power: Electric Motor
• Network: BACnet MS/TP

For more information, please Contact Us.

acutherm advantage vav diffuser

Why choose Baxi Condensing Boilers?

The Baxi Commercial range of floor and wall mounted boilers use cutting edge gas condensing technology. With stainless steel exchangers, high modulation ratios, flexible cascade install, indoor and outdoor use. Baxi condensing boilers are both compact and light weight and provide scalability.

Class leading ‘turndown’ modulation ratios enable smooth and efficient operation providing significant savings and return on investment. Available in outputs from 35Kw to 150Kw.

For more information, please Contact Us.

Airatherm Super Ray Heaters

Airatherm Super Ray Heaters are a super reliable infra-red heating for home or commercial outdoor entertainment areas.

Airatherm Super Ray heaters operate just like the sun, they are self-contained infra-red heaters that warm surfaces not the surrounding air, by emitting infra-red rays which gently warm everything they touch including you. Super Ray heaters operate on natural gas or LPG and are ideal for use in undercover or exposed outdoor areas as they are completely weather resistant.

For more information, please Contact Us or visit our Airatherm Super Ray Heater page.

airatherm super ray heaters

Induction in Chilled Beams and Diffusers

Induction in active beams and diffusers refers to the process of entraining air through a nozzle or along the discharge path of the diffuser.

Active Chilled Beams

In a chilled beam, the term “induction” is used to describe the process of injecting primary air under pressure through a nozzle, which in turn entrains return or plenum air at the discharge of the nozzle.

chilled beam induction

The amount of air that is entrained (Q induced) vs. the amount of air injected (Q injected) is referred to as the induction ratio.

induction ratio equation

The induced air is drawn through a water coil that may either heat or cool the air before it comes in contact with the injected air discharging from the nozzle. The amount of energy transferred by the water coil is influenced by several factors, including the induced air temperature, water supply temperature, volume of induced air moving through the water coil, and amount of coil surface area.

inject primary air under pressure

Figure 1: Process of injecting primary air under pressure through a nozzle

When designing a chilled beam system, one parameter that is often used is the transfer efficiency. This is the fraction of heating or cooling energy that is provided by the water coil heat transfer (q coil) vs. the volume of primary air (Q primary air).

transfer efficiency equation

The transfer efficiency is related to the overall HVAC system efficiency. It takes less brake horsepower to move thermal energy with water than it does with air, as the volume of air needed is significantly larger due to the lower amount of thermal energy it can store. Several recent building designs have indicated a potential brake horsepower reduction of 10 to 15%. The potential saving is higher, but limited by the system choices made by the designer, as well as the primary air volume requirements. To minimize the energy spent moving air, the primary air volume would be no more than the requirements for fresh air.

Knowing the induction ratio for chilled beams can be beneficial when designing the building’s HVAC system. For example, when selecting active chilled beams for use in a patient room, ASHRAE Standard 170 calls for a minimum of six air changes, with a minimum of two air changes being fresh air. All six air changes can be fresh air, but more energy efficient designs will typically have the fresh air being limited to the minimum two changes. This means the designer needs to select an induction ratio of 2 cfm induced to 1 cfm primary air to meet the required six room air changes.

Induction ratio for an active chilled beam is typically determined by calculating an energy balance on the beam. Basically, the total energy transferred by the water to the induced air is used to determine the volume of induced air. Determining the induction ratio is most often accomplished using air temperature measurements. Once we know the primary air temperature, induced air temperature, and discharge (mixed) air temperature, the induction ratio can be calculated. Discharge air temperature is influenced by the number and location of primary air nozzles along the length of the discharge slot, and should be determined in a laboratory setting, not the field. This will ensure that a true average discharge air temperature is recorded.


Unlike an active chilled beam, the induction ratio of a ceiling diffuser is not determined by the volume of air entering an opening, but rather the volume of air entrained along the discharge path of the diffuser (Figure 2). As supply air is moving from the outlet, the air velocity slows down due to the entrained air mass being added to the moving air. In order to determine the volume of induced air, the distance from the diffuser must be fixed, as the further away from the diffuser the larger the volume of entrained air and the larger the induction ratio. Once a distance is fixed, the entrained air volume can be estimated using the supply air temperature, entrained (room) air temperature, and mixed air temperature (at fixed point).

induction in chilled beams and diffusers

Figure 2: Volume air entrained along the discharge path of diffuser

The mixed air temperature is not an easily determined value, as there can be significant variations in the moving air layer. This layer is often less than 12mm thick near the discharge, but depending on the type of diffuser, may be much thicker further away. In some cases, the layer may even have detached from the ceiling. The better induction ratios are for diffusers with thin, well-defined discharge patterns with moderate to high discharge velocities.

A better metric to judge the effectiveness of a ceiling diffuser would be the Air Diffusion Performance Index (ADPI). The ADPI is a single number rating index for a diffuser with specified supply air volume, supply air temperature, and space cooling load. It is based on the air speed and effective draft temperature of the occupied zone.

For more information on this and other products, please Contact Us or call 1300 770 908.